Performance Characteristic Sheet EFFECTIVE DATE: April 17, 1998 EDITION NO.: 4 ## **MANUFACTURER AND MODEL:** Make: Niton Corporation Models: XL-309, 701-A, 702-A, and 703-A Spectrum Analyzers Source: 109Cd (10 - 40 mCi initial source strength) Note: This Performance Characteristic Sheet (PCS) is applicable to the listed Niton XRF instruments which have an operating software version of 5.1 (or equivalent) using a variable-time mode, and to Niton instruments having an operating software version of 1.2C (or equivalent) using a fixed-time mode. This sheet supersedes all previous sheets for the XRF instruments made by the Niton Corporation and the 1993 testing of XL prototypes reported in the document titled: *A Field Test of Lead-Based Paint Testing Technologies*: *Technical Report* (EPA Report No. 747-R-95-002b, May 1995). ## FIELD OPERATION GUIDANCE This PCS provides supplemental information to be used in conjunction with Chapter 7 (Lead-Based Paint Inspection) of the HUD *Guidelines for the Evaluation and Control of Lead-Based Paint Hazards in Housing* ("HUD Guidelines"). Performance parameters shown in this sheet are applicable only when operating the instrument using the manufacturer's instructions and the procedures described in Chapter 7 of the HUD Guidelines. ## **OPERATING PARAMETERS:** Use of variable-time paint test mode ("K & L + Spectra" mode) on instruments running software version 5.1 (or equivalent) using the "Combined Lead Reading" with the instrument's display of a 95%--confident (2-sigma) *Positive* or *Negative* determination versus the action-level as the stopping point of the measurement. Use of nominal 20-second readings for L-shell results or 120-second readings for K-shell results on instruments running software version 1.2C (or equivalent) in a fixed-time mode. ## **XRF CALIBRATION CHECK LIMITS**: 0.9 to 1.2 mg/cm² (inclusive) for instruments running software version 5.1 (or equivalent) 0.9 to 1.1 mg/cm² (inclusive) for instruments running software version 1.2C (or equivalent) # **SUBSTRATE CORRECTION:** (applicable to instruments running software versions 5.1 (or equivalent) or 1.2C (or equivalent)) For XRF results below 4.0 mg/cm², substrate correction recommended for: None. Substrate correction is not recommended for: Brick, Concrete, Drywall, Metal, Plaster, and Wood # THRESHOLDS: (applicable to instruments running software versions 5.1 (or equivalent) or 1.2C (or equivalent)) | DESCRIPTION | SUBSTRATE | THRESHOLD* (mg/cm²) | | |--|--|--|--| | Results not corrected for substrate bias | Brick
Concrete
Drywall
Metal
Plaster
Wood | 1.0
1.0
1.0
1.0
1.0
1.0 | | For instruments running software version 1.2C (or equivalent), application of the decision making methodology recommended in this PCS can result in inconclusive results regardless of whether decisions are based on L-shell readings, K-shell readings, or both. #### BACKGROUND INFORMATION #### **EVALUATION DATA SOURCE AND DATE** Performance parameters shown on this sheet are calculated from the EPA/HUD evaluation using archived building components. Three rounds of tests were conducted on approximately 150 test locations in each round. One round of testing was conducted March 1995 using a single instrument with an October 1994 source at 10 mCi initial strength while running software version 1.2C in a fixed-time mode with nominal 20-second readings for L-shell results or 120-second readings for K-shell results. The two other rounds of testing were conducted December 1997 using three different instruments, each running software version 5.1. Two of these instruments had new sources installed November 1997, the other instrument had a new source installed December 1997, all with 10 mCi initial strength. The December 1997 testing was performed in the variable-time paint test mode "K & L + Spectra" using the "Combined Lead Reading" with 2-sigma confidence interval as the stopping point of the measurement. #### **XRF CALIBRATION CHECK:** The calibration of the XRF instrument should be checked using the paint film nearest 1.0 mg/cm ² in the NIST Standard Reference Material (SRM) (e.g., for NIST SRM 2579, use the 1.02 mg/cm ² film). Measurements should be bracketed by successful XRF calibration check readings. XRF calibration checks are performed at the beginning and end of the day's inspections or at extended delays in testing, and (at least) every four hours during inspections or at a frequency recommended by the manufacturer, whichever is more stringent. If readings are outside the acceptable calibration check range, follow the manufacturer's instructions to bring the instrument into control before XRF testing proceeds. Measurements which are not bracketed by successful calibration checks should be considered suspect. ## **EVALUATING THE QUALITY OF XRF TESTING:** Randomly select ten testing combinations for re-testing from each house or from two randomly selected units in multifamily housing. (A testing combination is a location on a painted surface as defined in Chapter 7 of the HUD Guidelines.) For testing combinations involving up to four walls in a room, each wall is classified on its individual XRF reading. (See Chapter 7 for testing procedures if there are more than four walls in a room, and for testing exterior walls.) For instruments running software version 5.1 (or equivalent), conduct the test in the variable-time paint test mode "K & L + Spectra" using the "Combined Lead Reading" with 2-sigma confidence interval as the stopping point of the measurement. For instruments running software version 1.2C (or equivalent) in the fixed-time mode, use either 20-second readings for the L-shell results or 120-second readings for the K-shell results, as described in the "Classifications of Results" section below. Conduct XRF re-testing at the ten testing combinations selected for re-testing. Determine if the XRF testing in the units or house passed or failed the test by applying the steps below. Compute the Retest Tolerance Limit by the following steps: Determine XRF results for the original and retest XRF readings. Do not correct the original or retest results for substrate bias. In single-family and multifamily housing, a result is defined as a single reading. Therefore, there will be ten original and ten retest XRF results for each house or for the two selected units. Calculate the average of the original XRF result and retest XRF result for each testing combination. Square the average for each testing combination. Add the ten squared averages together. Call this quantity C. Multiply the number C by 0.0072. Call this quantity D. Add the number 0.032 to D. Call this quantity E. Take the square root of E. Call this quantity F. Multiply F by 1.645. The result is the Retest Tolerance Limit. Compute the average of all ten original XRF results. Compute the average of all ten retest XRF results. Find the absolute difference of the two averages. If the difference is less than the Retest Tolerance Limit, the inspection has passed the retest. If the difference of the overall averages equals or exceeds the Retest Tolerance Limit, this procedure should be repeated with ten new testing combinations. If the difference of the overall averages is equal to or greater than the Retest Tolerance Limit a second time, then the inspection should be considered deficient. Use of this procedure is estimated to produce a spurious result approximately 1% of the time. That is, results of this procedure will call for further examination when no examination is warranted in approximately 1 out of 100 dwelling units tested. ## **BIAS AND PRECISION:** Bias and precision data were not computed for instruments using software version 5.1 and taking variable mode readings. (See Appendix B, Section B.3.2 of the document titled *Methodology for XRF Performance Characteristic Sheets*, EPA-747-R-45-008, September 1997). During the 1997 testing, there were 12 testing locations with laboratory-measured lead levels equal to or greater than 4.0 mg/cm² lead which were tested using two instruments in the variable-time paint test mode. None of these testing locations had XRF readings less than 1.0 mg/cm². These data are for illustrative purposes only. Substrate correction is not recommended for this XRF instrument. The bias and precision data given below are for instruments running software version 1.2C (or equivalent) and were computed without substrate correction using the 20-second L-shell readings from samples with reported laboratory results less than 4.0 mg/cm² lead. Readings reported by the instrument in the "x" or ">>x" format were not used in the computation. During the 1995 testing there were 15 test locations with a laboratory reported result equal to or greater than 4.0 mg/cm² lead. Of these, 12 readings were reported in the ">x" or ">>x" format, but of the 3 remaining, 1 had an XRF reading less than 1.0 mg/cm². Bias & Precision Results for Niton Model XL-309 Instruments Using Software Version 1.2C (or equivalent) | MEASURED AT | SUBSTRATE | BIAS (mg/cm²) | PRECISION [*] (mg/cm ²) | | | | | |------------------------------------|---------------------------|---------------|--|--|--|--|--| | 0.0 mg/cm ² | All | 0.0 | <0.1 | | | | | | 0.5 mg/cm ² | All | 0.0 | 0.2 | | | | | | 1.0 mg/cm ² | g/cm ² All 0.0 | | 0.3 | | | | | | 2.0 mg/cm ² | All | -0.1 | 0.5 | | | | | | *Precision at 1 standard deviation | | | | | | | | #### **CLASSIFICATION OF RESULTS:** This section describes how to apply information displayed by this instrument to determine the presence or absence of lead in paint using the procedures recommended in Chapter 7 of the HUD Guidelines. These guidelines recommend classifying XRF results as positive, negative, or inconclusive compared to the lead-based paint 1.0 mg/cm² standard. For Niton Model XL-309, 701-A, 702-A, and 703-A instruments running software version 5.1 (or equivalent), XRF results are classified using a threshold. There is no inconclusive classification when using the threshold for instruments running software version 5.1. In single-family and multifamily housing, an XRF result is a single reading taken on each testing combination. (A testing combination is a location on a painted surface as defined in Chapter 7 of the HUD Guidelines.) For testing combinations involving up to four walls in a room, each wall is classified on its individual XRF reading. (See Chapter 7 for testing procedures if there are more than four walls in a room, and for testing exterior walls.) For computing the XRF result, use all digits that are displayed by the instrument as the "Combined Lead Reading." Results are classified as positive (i.e., $\geq 1.0 \text{ mg/cm}^2$), if greater than or equal to the threshold, or negative (< 1.0 mg/cm²) if less than the threshold. Threshold values, provided in the tables above, were determined by comparing XRF test results to the 1.0 mg/cm² standard. For Niton Model XL-309 instruments running software version 1.2C (or equivalent), additional procedures are needed to classify readings because this software displays readings <u>and</u> ancillary information useful for classification purposes. An algorithmic procedure is described that makes use of the XRF reading and other displayed information. The algorithm for classifying results is first applied to 20-second nominal L-shell readings followed by 120-second nominal K-shell readings to resolve inconclusive results, or to recommend laboratory analysis of paint-chip samples, if necessary. A listing of laboratories recognized by the EPA National Lead Laboratory Accreditation Program (NLLAP) for the confirmational analysis of inconclusive results is available from the National Lead Clearinghouse at 1-800-424-LEAD. XRF results are classified using threshold values for the Model XL-309 software version 1.2C (or equivalent). Results are classified as positive if greater than or equal to the threshold, and as negative if less than the threshold. There is no inconclusive classification when using threshold values. However, in some cases, inconclusive results still may be obtained regardless of whether decisions are based on L-shell readings, K-shell readings, or both, as described below. Use all digits that are reported by the instrument. Threshold values, which were determined for comparing results to the 1.0 mg/cm² standard, are provided in the table above. This instrument displays its lead-based paint measurements as both L-shell and K-shell readings based on the corresponding L-shell and K-shell X-ray fluorescence (refer to Chapter 7 of the HUD Guidelines for more details). The L-shell readings (or L-readings) are displayed as a numerical result alone, or as a numerical result preceded by either one greater-than symbol (">") or preceded by two greater-than symbols (">>"). The two greater-than symbols will only be displayed when the detected lead level is greater than 5.0 mg/cm². Since the maximum lead level reported by this instrument is 5.0 mg/cm², lead levels greater than 5.0 mg/cm² are displayed as ">>5.0". Other examples of how L-readings can be displayed (in mg/cm² units) are "0.6" and ">0.9". The numerical display alone implies that the instrument measured the lead in the paint at the displayed level using L-shell X-ray fluorescence; 0.6 mg/cm² in the example. A number preceded by a single greater-than symbol indicates that the measurable lead is deeply buried in the paint and the detected lead level is greater than the displayed value. In the example, >0.9 indicates that the instrument detected lead deeply buried in paint at a level greater than 0.9 mg/cm². K-shell readings (or K-readings) are displayed in one of two ways: 1) as a single K-reading plus and minus a "precision" value or 2) as an upper K-reading and lower K-reading. The same method is used for testing in single-family and multifamily housing. The HUD Guidelines recommend taking a single XRF reading on a testing combination. (A testing combination is a location on a painted surface as defined in Chapter 7 of the HUD Guidelines.) For testing combinations involving up to four walls in a room, each wall is classified on its individual XRF reading. (See Chapter 7 for testing procedures if there are more than four walls in a room, and for testing exterior walls.) - A. Take a single 20-second nominal reading on each testing combination. - B. Classify the L-reading based on the type of information displayed. If two greater-than symbols are displayed then: - Classify the >>5.0 L-reading as POSITIVE If one greater-than symbol is displayed then: - Classify the L-reading as POSITIVE if the numerical result that follows the greater than symbol is equal to or greater than 1.0. - Classify the L-reading as INCONCLUSIVE if the numerical result that follows the greater than symbol is less than 1.0. If the numerical L-reading is displayed alone (that is, without any preceding greater-than symbols) then: - Classify the L-reading as POSITIVE if the numerical result is equal to or greater than 1.0. - Classify the L-reading as NEGATIVE if the numerical result is less than 1.0. - C. Resolution of results classified as inconclusive. All results classified as inconclusive above require further investigation. Take a 120-second nominal XRF reading and use the K-shell reading. In multifamily housing, resolve the inconclusive classification with a single K-shell reading or laboratory analysis as described below. - Classify the result as POSITIVE if either the K-reading minus the displayed precision value <u>or</u> the lower K-reading is equal to or greater than 1.0. - Classify the result as NEGATIVE if either the K-reading plus the displayed precision value <u>or</u> the upper K-reading is less than 1.0. - Classify the result as INCONCLUSIVE if neither of the above decision rules using the K-reading provided a classification which can occur when the upper K-reading is equal to or greater than 1.0 or the lower K-reading is less than 1.0. To resolve a remaining INCONCLUSIVE classification, remove a paint-chip sample as described in Chapter 7 of the HUD Guidelines and have it analyzed by a qualified laboratory as described in Chapter 7. # **TESTING TIMES (FOR SOFTWARE VERSION 5.1):** For the variable-time paint test mode "K & L + Spectra," the instrument continues measuring until a positive or negative result is indicated relative to an action level (1.0 mg/cm² for archive testing) and the current precision, or until the reading is terminated by moving the instrument away from the testing surface. None of the variable mode readings were terminated because of the two-minute limit used for archive testing. The following table provides testing time information for this testing mode. Source strength and type of substrate will affect actual testing times. | Testing Times for Instruments Running Software Version 5.1 | | | | | | | | | |--|--------------------------------|--------|--------------------------------|--|------------------|-----------|--|--| | Variable mode testing times (seconds) | | | | | | | | | | | All data | | | Median for laboratory—measured lead levels (mg/cm ²) | | | | | | Substrate | 25 th
Percentile | Median | 75 th
Percentile | Pb < 0.25 | 0.25 <= Pb < 1.0 | 1.0 <= Pb | | | | Wood
Drywall | 6 | 8 | 15 | 6 | 20 | 5 | | | | Metal | 6 | 13 | 20 | 13 | 20 | 6 | | | | Brick
Concrete
Plaster | 6 | 11 | 20 | 9 | 18 | 6 | | | #### **DOCUMENTATION:** This PCS was developed in accordance with the methodology in the EPA report titled *Methodology for XRF Performance Characteristic Sheets* (EPA 747-R-95-008, September 1997). This report provides an explanation of the statistical methodology used to construct the data in the sheets, and provides empirical results from using the recommended inconclusive ranges or thresholds for specific XRF instruments. For a copy of this document call the National Lead Clearinghouse at 1-800-424-LEAD. This XRF Performance Characteristic Sheet was developed by the Midwest Research Institute (MRI) under a grant from the U. S. Environmental Protection Agency and a separate contract between MRI and the XRF manufacturer. The U.S. Department of Housing and Urban Development (HUD) has determined that the information provided here is acceptable when used as guidance in conjunction with Chapter 7, Lead-Based Paint Inspection, of HUD's *Guidelines for the Evaluation and Control of Lead-Based Paint Hazards in Housing*. While MRI reserves the right to revise this XRF Performance Characteristic Sheet at any time, HUD's statement of acceptance would not apply to a revision until HUD has reviewed the revision and made a determination of its acceptability.